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Introduction & The Problem

● Increase usage of online employment websites have lead to increase in 

fraudulent job postings.

● Fraudulent job posting have two main goals:
○ Acquire confidential personal information. 

○ Solicit unlawful payments

● GOAL: Develop a Natural Language Processing (NLP) model that is able to 

detect fake job postings based on the textual description of the jobs. 

● Utilize different kind of machine learning models and algorithms to identify 

patterns or anomalies. 



Data Acquisition

● Employment Scam Aegean Dataset (EMSCAD)

● Published by the University of the Aegean’s Laboratory of Information & 

Communication Systems Security 

● Publicly Available Dataset that contains 17,880 real-life job postings online. 

○ 17,014 Legitimate Job Postings and 866 fraudulent job postings. 

● EMSCAD records were manually annotated and classified into two 

categories between 2012-2014.



EDA

● Overall binary and nominal 

features does not show 

strong relationships. 

● Take a closer look at the 

string and text entries. 

Type Name Type Name

String

Title

Binary

Telecommuting

Location Company logo

Department Questions

Salary range Fraudulent

HTML 
fragment

Company profile

Nominal

Employment type

Description Required experience

Requirements Required education

Benefits Industry

Function



EDA & Data Preprocessing
● Binary/Categorical 

values does not show 

strong relationship. 

● Fraudulent postings 

distribution are 

similar across the 3 

features. 



Specific Industries have higher rate of fraudulent postings 



Specific Job Functions have higher rate of fraudulent postings 



Data Preprocessing
Type Name Type Name

String

Title

Binary

Telecommuting

Location Company logo

Department Questions

Salary range Fraudulent

HTML 
fragment

Company profile

Nominal

Employment type

Description Required experience

Requirements Required education

Benefits Industry

Function

● Base on HTML/text features
● Concatenate String & Nominal 

features if not existed before
● Remove

○ Stop words
○ Punctuations
○ Etc. 

● Keep
○ Numbers
○ Text

● Fraudulent
○ T == 1
○ F == 0



Key metrics 
1. Recall: Reduce the false negative 

a. Detect as many scams as possible

b. Do the best to prevent job seekers from being scammed 

2. Precision: Reduce the false position 

a. Detect as precise as possible 

b. Do the best to distinguish regular post from scams and 

prevent positions from being classified as scams and missed



Models
1. Bag-of-words 

a. Traditional Model

i. Logistic Regression

ii. Random Forest

2. Neural Networks

a. LSTM

b. BERT



Scam 
Jobs 
High Pay
No Experience

● The text is represented as a bag of its 

words and its frequency, and it 

disregards  grammar and order .

● Two approaches:

○ Custom Top n-words Model

■ From 50 - 1200 words

○ CountVectorizer

■ n-gram (1, 2, 3, 4)

Bag-of-words



Top n-words Model
Evaluate fraudulent postings in training set data 

Extract strings and texts in dataset 

Count occurrences of each word 

Sort words by occurrence and store in list 

Store top 1200 frequently seen words in fraudulent postings in list 

Use function "words_in_text" to count occurrences of words in texts and 

return array matrix Use training set array matrix to fit and train model 

Calculate scores based on testing set results Experiment: Fine-tune model 

by using different number of words to train model Results on test set 

predictions shown in table Precision and recall reach threshold after using 

900+ words in model Adding more words to model won't significantly 

improve performance within top 1200 words threshold

Count Word 
Occurrences in 

Training  Set

Store in Dictionary & 
sort by Frequency

Select Top 
1200 Words in Spam 

Emails

Count Frequency for 
the Top-N Words

Fit and Train the 
Model

Predict 
Testing Set



Top n-words

● Testing Top 50, 100 to 1200 words by 100 

interval.

● Precision and Recall improves slower 

after 900 words.

● Many of those words are also present in 

the non-fraudulent set. 

● Questions raised:

○ More words or preserve sequence?  



CountVectorizer and Logistic Regression

Fit Transform on 
Training Set 

(Vectorize &  Frequency)

1-gram, 1-2-gram, 
2-gram

(to lowercase and stop 
words)

Transform Testing Set

Train Logistics based 
on Train Set

Predict Test Set 
Precision and Recall 

Scores



CountVectorizer &
Logistic Regression
● Improvement in precision and recall.

● Best performance when 1-gram, and 

2-grams are both considered. 

● Over predicts when only 2-grams are 

considered, lead to high False 

positives. 



Neural Networks - LSTM

Hyperparameters

1. Embedding vector size 

a. 50 to 200

2. LSTM layer number 

a. 1 to 3

3. Class weight

a. Class 0: 1.0

b. Class 1: 1.0 to 3.0



Neural Networks - LSTM results 
● Best Parameters:

○ Embedding dimension = 50

○ Layer of LSTM = 3

○ Class Weight: {0: 1.0, 1: 2.0}

model embedding LSTM layer class_1 recall precision accuracy f1

0 50 1 1 0.980 0.614 0.751 0.755

1 50 1 1.5 0.979 0.677 0.766 0.801

2 50 1 2 0.978 0.655 0.749 0.784

3 50 1 3 0.977 0.695 0.751 0.812

4 50 2 2 0.977 0.646 0.737 0.778



Neural Networks - BERT

Hyperparameters

1. Pre-trained BERT model

a. 3 Models

2. Dropout rate 

a. 0.1 to 06

3. Class weight

a. Class 0: 1.0

b. Class 1: 1.0 to 3.0



Neural Networks - BERT results
● Best Parameters:

○ Pre-trained Model: small_bert/bert_en_uncased_L-4_H-512_A-8

○ Dropout rate: 0.2

○ Class Weight: {0: 1.0, 1: 2.0}

model dropout_r class_0 class_1 recall precision accuracy f1

0 0.1 1 1 0.722 0.953 0.984 0.646

1 0.1 1 1.5 0.789 0.912 0.986 0.656

2 0.1 1 2 0.789 0.903 0.985 0.672

3 0.1 1 3 0.735 0.965 0.985 0.629

4 0.1 1 5 0.717 0.976 0.985 0.623

5 0.2 1 1 0.785 0.951 0.987 0.679

6 0.2 1 1.5 0.812 0.923 0.987 0.691

7 0.2 1 2 0.821 0.943 0.989 0.694



Model Results
Model Precision Recall Accuracy F1-Score

Top n-words 
Logistics Regression

0.726 0.839 0.979 0.778

CountVectorizer
Logistics Regression

0.749 0.988 0.988 0.852

LSTM 0.637 0.953 0.980 0.763

BERT 0.943 0.821 0.989 0.694



Improvement with Traditional Model

● Created a balanced dataset
○ Regular: 1000
○ Scam: 866

● CountVectorizer 

Fit_transform  to the 

sampled training and 

transform the testing data. 

● Applied the dataset to 

various kind of models.



Improvement with Traditional Model

● Hyperparameter Tuning: 

Using Grid Search and Cross 
Validation to find the best 
parameters for logistic 
regression, and random forests

● ROC threshold 

● Logistic Regression: 
○ Best Parameters:  {'C': 0.01, 'penalty': 'l2', 'solver': 'liblinear'}

● Random Forest: 
○ Best Parameters:  {'max_depth': 30, 'min_samples_split': 10, 'n_estimators': 50}



Neural Networks - Limitations 

● Limited computational resources for BERT:

○ 1 hour/epoch locally

○ 15 min/epoch on Google Colab with GPU but with limitation 

○ Only tested 8 sets of parameters

● More data and more complex structure is required 

○ BERT reduces false positives

○ LSTM reduces false negative 

○ Cannot achieve both in a single model

○ Need more complex structure to capture more relationships and more data to train the 

model. 



Challenge, Impact and Evaluation

● Imbalance raw data create difficulty to train models. 

● The choice to prioritize either recall and/or precision? 

● More computational resources are required to speed up the training process

● More data is required to fine tune the model 

● NN model still need more training/hyperparameter tuning

● Would apply to a certain range of job postings, but may be limited in impact.

● The format and content of online job postings have changed over the years,



Q&A



Model Results

Model Precision Recall Accuracy F1-Score

Top n-words 
Logistics Regression

0.726 0.839 0.979 0.778

CountVectorizer
Logistics Regression

0.749 0.988 0.988 0.852

LSTM 0.637 0.953 0.980 0.763

BERT 0.943 0.821 0.989 0.694


