
Identifying Fraudulent
Job Postings
INFO 251 Applied Machine Learning
Morris Chang, Gina Shuyao Wang, Eric Yuxin Miao

Table of Contents

● Introduction and the problem

● Data Acquisition

● EDA & Data Preprocessing

● Modeling

● Results

● Impact and Evaluation

Introduction & The Problem

● Increase usage of online employment websites have lead to increase in

fraudulent job postings.

● Fraudulent job posting have two main goals:
○ Acquire confidential personal information.

○ Solicit unlawful payments

● GOAL: Develop a Natural Language Processing (NLP) model that is able to

detect fake job postings based on the textual description of the jobs.

● Utilize different kind of machine learning models and algorithms to identify

patterns or anomalies.

Data Acquisition

● Employment Scam Aegean Dataset (EMSCAD)

● Published by the University of the Aegean’s Laboratory of Information &

Communication Systems Security

● Publicly Available Dataset that contains 17,880 real-life job postings online.

○ 17,014 Legitimate Job Postings and 866 fraudulent job postings.

● EMSCAD records were manually annotated and classified into two

categories between 2012-2014.

EDA

● Overall binary and nominal

features does not show

strong relationships.

● Take a closer look at the

string and text entries.

Type Name Type Name

String

Title

Binary

Telecommuting

Location Company logo

Department Questions

Salary range Fraudulent

HTML
fragment

Company profile

Nominal

Employment type

Description Required experience

Requirements Required education

Benefits Industry

Function

EDA & Data Preprocessing
● Binary/Categorical

values does not show

strong relationship.

● Fraudulent postings

distribution are

similar across the 3

features.

Specific Industries have higher rate of fraudulent postings

Specific Job Functions have higher rate of fraudulent postings

Data Preprocessing
Type Name Type Name

String

Title

Binary

Telecommuting

Location Company logo

Department Questions

Salary range Fraudulent

HTML
fragment

Company profile

Nominal

Employment type

Description Required experience

Requirements Required education

Benefits Industry

Function

● Base on HTML/text features
● Concatenate String & Nominal

features if not existed before
● Remove

○ Stop words
○ Punctuations
○ Etc.

● Keep
○ Numbers
○ Text

● Fraudulent
○ T == 1
○ F == 0

Key metrics
1. Recall: Reduce the false negative

a. Detect as many scams as possible

b. Do the best to prevent job seekers from being scammed

2. Precision: Reduce the false position

a. Detect as precise as possible

b. Do the best to distinguish regular post from scams and

prevent positions from being classified as scams and missed

Models
1. Bag-of-words

a. Traditional Model

i. Logistic Regression

ii. Random Forest

2. Neural Networks

a. LSTM

b. BERT

Scam
Jobs
High Pay
No Experience

● The text is represented as a bag of its

words and its frequency, and it

disregards grammar and order .

● Two approaches:

○ Custom Top n-words Model

■ From 50 - 1200 words

○ CountVectorizer

■ n-gram (1, 2, 3, 4)

Bag-of-words

Top n-words Model
Evaluate fraudulent postings in training set data

Extract strings and texts in dataset

Count occurrences of each word

Sort words by occurrence and store in list

Store top 1200 frequently seen words in fraudulent postings in list

Use function "words_in_text" to count occurrences of words in texts and

return array matrix Use training set array matrix to fit and train model

Calculate scores based on testing set results Experiment: Fine-tune model

by using different number of words to train model Results on test set

predictions shown in table Precision and recall reach threshold after using

900+ words in model Adding more words to model won't significantly

improve performance within top 1200 words threshold

Count Word
Occurrences in

Training Set

Store in Dictionary &
sort by Frequency

Select Top
1200 Words in Spam

Emails

Count Frequency for
the Top-N Words

Fit and Train the
Model

Predict
Testing Set

Top n-words

● Testing Top 50, 100 to 1200 words by 100

interval.

● Precision and Recall improves slower

after 900 words.

● Many of those words are also present in

the non-fraudulent set.

● Questions raised:

○ More words or preserve sequence?

CountVectorizer and Logistic Regression

Fit Transform on
Training Set

(Vectorize & Frequency)

1-gram, 1-2-gram,
2-gram

(to lowercase and stop
words)

Transform Testing Set

Train Logistics based
on Train Set

Predict Test Set
Precision and Recall

Scores

CountVectorizer &
Logistic Regression
● Improvement in precision and recall.

● Best performance when 1-gram, and

2-grams are both considered.

● Over predicts when only 2-grams are

considered, lead to high False

positives.

Neural Networks - LSTM

Hyperparameters

1. Embedding vector size

a. 50 to 200

2. LSTM layer number

a. 1 to 3

3. Class weight

a. Class 0: 1.0

b. Class 1: 1.0 to 3.0

Neural Networks - LSTM results
● Best Parameters:

○ Embedding dimension = 50

○ Layer of LSTM = 3

○ Class Weight: {0: 1.0, 1: 2.0}

model embedding LSTM layer class_1 recall precision accuracy f1

0 50 1 1 0.980 0.614 0.751 0.755

1 50 1 1.5 0.979 0.677 0.766 0.801

2 50 1 2 0.978 0.655 0.749 0.784

3 50 1 3 0.977 0.695 0.751 0.812

4 50 2 2 0.977 0.646 0.737 0.778

Neural Networks - BERT

Hyperparameters

1. Pre-trained BERT model

a. 3 Models

2. Dropout rate

a. 0.1 to 06

3. Class weight

a. Class 0: 1.0

b. Class 1: 1.0 to 3.0

Neural Networks - BERT results
● Best Parameters:

○ Pre-trained Model: small_bert/bert_en_uncased_L-4_H-512_A-8

○ Dropout rate: 0.2

○ Class Weight: {0: 1.0, 1: 2.0}

model dropout_r class_0 class_1 recall precision accuracy f1

0 0.1 1 1 0.722 0.953 0.984 0.646

1 0.1 1 1.5 0.789 0.912 0.986 0.656

2 0.1 1 2 0.789 0.903 0.985 0.672

3 0.1 1 3 0.735 0.965 0.985 0.629

4 0.1 1 5 0.717 0.976 0.985 0.623

5 0.2 1 1 0.785 0.951 0.987 0.679

6 0.2 1 1.5 0.812 0.923 0.987 0.691

7 0.2 1 2 0.821 0.943 0.989 0.694

Model Results
Model Precision Recall Accuracy F1-Score

Top n-words
Logistics Regression

0.726 0.839 0.979 0.778

CountVectorizer
Logistics Regression

0.749 0.988 0.988 0.852

LSTM 0.637 0.953 0.980 0.763

BERT 0.943 0.821 0.989 0.694

Improvement with Traditional Model

● Created a balanced dataset
○ Regular: 1000
○ Scam: 866

● CountVectorizer

Fit_transform to the

sampled training and

transform the testing data.

● Applied the dataset to

various kind of models.

Improvement with Traditional Model

● Hyperparameter Tuning:

Using Grid Search and Cross
Validation to find the best
parameters for logistic
regression, and random forests

● ROC threshold

● Logistic Regression:
○ Best Parameters: {'C': 0.01, 'penalty': 'l2', 'solver': 'liblinear'}

● Random Forest:
○ Best Parameters: {'max_depth': 30, 'min_samples_split': 10, 'n_estimators': 50}

Neural Networks - Limitations

● Limited computational resources for BERT:

○ 1 hour/epoch locally

○ 15 min/epoch on Google Colab with GPU but with limitation

○ Only tested 8 sets of parameters

● More data and more complex structure is required

○ BERT reduces false positives

○ LSTM reduces false negative

○ Cannot achieve both in a single model

○ Need more complex structure to capture more relationships and more data to train the

model.

Challenge, Impact and Evaluation

● Imbalance raw data create difficulty to train models.

● The choice to prioritize either recall and/or precision?

● More computational resources are required to speed up the training process

● More data is required to fine tune the model

● NN model still need more training/hyperparameter tuning

● Would apply to a certain range of job postings, but may be limited in impact.

● The format and content of online job postings have changed over the years,

Q&A

Model Results

Model Precision Recall Accuracy F1-Score

Top n-words
Logistics Regression

0.726 0.839 0.979 0.778

CountVectorizer
Logistics Regression

0.749 0.988 0.988 0.852

LSTM 0.637 0.953 0.980 0.763

BERT 0.943 0.821 0.989 0.694

