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1 INTRODUCTION

The development of information and communication technology in the
past decades has changed human daily life in different ways. In the past,
information was often communicated through physical means, such as
papers and books. The development of the internet and other technology
has pushed the content that used to be published on paper to migrate to
online platforms, including news, advertisements, and job postings. In
the past, newspapers were often the first place where people could look
for new job postings and opportunities, and this often included a very
minimal amount of information due to the high prices and limitations in
space. The introduction of the Internet and employment search websites
have increased the accessibility of job postings and enabled employers
with limited budgets and resources to acquire the talents they needed.
However, this flexibility and reduction in barriers have also led to an
increase in online fraudulent job postings.

Fraudulent job postings online usually carry malicious goals and
intentions, including the attempt to acquire confidential personal
information from the applicants or solicit payments from applicants as
application fees. The personal information acquired by the fraudulent job
postings is used as a part of a larger scam, or illegally sold to third parties.
This may endanger the applicant’s privacy or accidentally involve the
application in illegal activities. In addition, certain applications attempt

to solicit payments from job applicants as “application fees”, and this
often leads to financial losses for the applicant.

Therefore, developing a system to detect fraudulent job postings is
crucial to protect job seekers and prevent the spread of these malicious
activities on job posting platforms. The employment posting websites
would be able to use such models to predict, filter, and remove fraudulent
postings. This project aims to build and develop a Natural Language
Processing (NLP) model that could analyze the textual descriptions
of job postings and identify any suspicious patterns or anomalies that
may indicate fraudulent activity. This includes utilizing different kinds
of machine learning models and algorithms to identify patterns or
anomalies, and this system can help job seekers to identify legitimate job
postings and avoid falling victim to fraudulent activities. Furthermore,
this research can contribute to the development of better fraud detection
systems in other domains as well.

2 DATA ACQUISITION

The dataset that would be used in this project is the Employment
Scam Aegean Dataset (EMSCAD) as shown in Table 1. It is published
by the University of the Aegean’s Laboratory of Information and
Communication Systems Security. This dataset is publicly available
for download and contains 17880 real-life job postings from online
platforms, including 17014 legitimate job postings and 866 fraudulent
job postings. The instances in the EMSCAD dataset were manually
annotated and classified into two categories.

Table 1. Data Type in the dataset

Type Name Type Name
String Title Binary Telecommuting
Location Company logo
Department Questions
Salary range Fraudulent
HTML fragment Company profile | Nominal = Employment type

Description Required experience

Requirements Required education
Benefits Industry
Function

3 EXPLORATORY DATA ANALYSIS

During the exploratory data analysis phase, our team explored the
different features within the dataset, and many of the features contained
too many null values or were too noisy in general. The string features,
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such as title, location, and salary range of the job postings did not show
any significant relationships with fraudulent postings. In addition, there
are significant amounts of null values in features such as departments and
salary ranges, making it difficult to interpret the features.

In addition, binary and categorical features, such as telecommuting,
company logo, and questions also did not show significant changes in
regards to fraudulent postings. The nominal values such as industries and
functions did contain a few items that had a more significant fraudulent
frequency than other items in the dataset.
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Figure 1. EDA: Binary Features and Fraudulent Label

Figure 2. EDA: Individual Binary Features and Fraudulent Label

Figure 1 and Figure 2 shows that there are no significant differences in
fraudulent postings for the three categorical variables, as the number of
fraudulent postings does not change significantly within these features.
The only feature with a higher frequency of fraudulent postings is
telecommuting, when the feature is ‘True’, it is less likely that it would
be a fraudulent job posting.

In addition to the features discussed above, the features ‘functions’
and ‘industry’ have certain inputs that have higher fraudulent postings
compared to other inputs, as shown in Figure 3 and Figure 4. For
example, job postings in the oil and energy, and accounting industries
have a higher number of fraudulent posts, while job functions such as
administrative, and engineering, also have a higher number of fraudulent
postings.

Industry Top20,

Figure 3. EDA: Industry Feature

The original dataset is composed of 16 features, including five nominal
features, four categorical features, four string features, and four features
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Figure 4. EDA: Job Function Feature

that contained HTML fragments. In order to simplify the modeling
process, our team preprocessed the data in the following ways.

1. Removed binary and categorical variables from the dataset, as most
of the categorical variables, such as if a company logo is attached
or if the job involves telecommuting does not significantly affect the
chances of fraudulent postings.

2. Concatenated nominal and string variables with HTML variables
into a single feature that would be processed afterward.

3. Removed duplicate contents and values from the new feature. For
example, if the job title is included multiple times originally in
different parts of the dataset, only one instance of it would be kept.

4. Removed HTML tags, and fragments from the text, stop words,
Unicodes, and punctuation using the NLTK package.

5. One-hot encoded the fraudulent column into O for legitimate
postings and 1 for fraudulent postings.

6. The dataset is also divided into training and testing datasets by
using sci-kit-learn’s built-in train_test_split function, using 75% of
the dataset as training data, and 25% of the dataset as testing data,
with a random state of 42.

4 MODELING

Upon completion of the exploratory data analysis process, our team
began the modeling process by building baseline models with the bag-
of-words approach with traditional models such as logistic regression
and random forests. The following section would discuss the modeling
process and the results in each of the stages.

The Bag of Words (BoW) approach is a natural language processing
technique to represent texts and words, disregarding order, and grammar.
The string text is transformed into a matrix that represents the frequency
of each word in the document. In other words, Bag-of-Words is a way of
representing texts in a numeral format by their frequency.

4.1 Approach 1: Customized Top n-words Model

The first approach that our team pursued is evaluating the fraudulent
postings in the training set data, extracting all of the strings and texts
in the dataset, and counting the number of occurrences for each of the
words. The words are sorted by the number of occurrences in the dataset,
and stored in a list. The top 1200 words that are often seen in fraudulent
postings in the training set are stored in a list.

The function words_in_text would then take in a list of words, and a list
of texts, and would count the number of occurrences for each of the words
in the texts, and return an array matrix. The training set array matrix is
then used to fit and train the model, and the scores are calculated based
on the results from the testing set.

In order to experiment and test the relationship and changes in the top
number of words in the dataset, our team attempted to fine-tune the model
by using a different number of words to train the model, and the results
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on the test set predictions are shown in Table 2. As shown in the table,
the precision and recall reach a certain threshold after using 900+ words
in the model, and the improvement would slow down once passing this
threshold. However, it is still worth noting that the increase in words does
lead to an increase in precision and recall.

Table 2. Results of the TOP-n word model

Accuracy Precision Recall F1

50 0.950 0.013 0.429  0.026
100 0.958 0.238 0.757 0.361
200 0.965 0.395 0.815 0.531
300 0.967 0.489 0.773  0.599
400 0.972 0.556 0.821 0.663
500 0.974 0.655 0.798 0.719
600 0.975 0.673 0.798  0.730
700 0.976 0.664 0.813 0.731
800 0.976 0.682 0.800 0.736
900 0.977 0.695 0.812 0.749
1000 0.978 0.700 0.825 0.757
1100 0.979 0.709 0.840 0.769
1200 0.979 0.727 0.839 0.779

4.2 Approach 2: Using all words with CountVectorizer

With the results from the previous section, our team wanted to attempt
to increase the precision and recall score by using all the words that are
included in the training set, and by turning all the words in the training
set into vectors and counting the frequency of each of those words. The
testing set would also be transformed based on the same CountVectorizer.

The resulting matrix of word counts would be inputted into machine
learning models, such as logistic regression to classify if the job posting
is fraudulent. The function also has the built-in capability to remove stop
words or convert all text to lowercase. In addition, the function also
allows different inputs of n-grams, which would help to preserve patterns
and sequences of the text. Our team attempted three types of n-grams,
the first with single words, single and two words, and only two words.
The result of the model’s prediction on the test set is shown in table 3,
as indicated, the precision and recall are performing better compared to
the previous model, especially when both 1-grams and 2-grams are taken
into account. This means that reversing the order and sequence of the
text would be helpful in building the model. This has led to the continued
development of the LSTM and BERT models in the following sections.
However, before using neural networks, our team attempted to tackle
the problem of imbalance in the dataset by manually creating a random
balanced sample and conducting a similar analysis.

Table 3. Results of CountVectorizer n-gram model

Accuracy Precision Recall F1
1,1 0.986 0.762 0.950 0.846
1,2 0.987 0.749 0.988  0.852
2,2) 0.984 0.682 1.000 0.811

4.3 Approach 3: LSTM Model

The LSTM (Long Short-Term Memory) model is designed to overcome
the gradient vanishing problem in traditional RNNs with its memory cell
that can choose to forget or remember information over time. The LSTM
model is useful in tasks that require the processing of sequential data,
such as text data that have been shown in previous sections.
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Figure 5. The structure of the LSTM model

The hyper-parameters that are chosen to be tuned in our model are
embedding vector size, LSTM_layers, and the class weight of our
prediction.

1. Embedding Size: [50,100,150,200]
2. LSTM.layer = [1,2,3]
3. Class Weight:

a. Class 0: 1.0, Class 1: 1.0
b. Class 0: 1.0, Class 1: 1.5
. Class 0: 1.0, Class 1: 2.0
. Class 0: 1.0, Class 1: 3.0
e. Class 0: 1.0, Class 1: 5.0

[T o]

The application of class weight is to help the model to better capture
the minority but important scam class in the imbalance dataset. The
model was tuned to find an optimal weight to give for each class. After
grid search and cross-validation, the best parameters were when the
embedding dimension was set to 50, with 3 LSTM layers, and a class
weight of 1.0 for class 0, and 2.0 for class 1. Below is part of our
cross-validation metric in table4.

The results show that the LSTM is good at increasing the recall,
decreasing the false negative, and preventing scams from escaping from
the screening. However, it is not good at precision, which means that it
mis-classifies a lot of regular posts to be scams. This would lead to people
missing opportunities.

4.4 Approach 4: BERT Model

BERT (Bidirectional Encoder Representations from Transformers) is
a state-of-the-art pre-trained language model developed by Google
researchers in 2018. It is based on the Transformer architecture and can
be fine-tuned for various natural language processing tasks, such as text
classification, question answering, and language translation.

We started with the pre-trained BERT model from Google and try to
fine-tune it with our dataset. There are three hyper-parameters that are
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Table 4. LSTM cross-validation results

Embedding LSTM layer Class_.1 Recall Precision Accuracy F1-Score
50 1 1 0.980 0.614 0.751 0.755
50 1 1.5 0.979 0.677 0.766 0.801
50 1 2 0.978 0.655 0.749 0.784
50 1 3 0.977 0.695 0.751 0.812
50 2 2 0.977 0.646 0.737 0.778
text | InputLayer that ‘legitimate job postings are not accidentally marked as fraudulent
postings. On the contrary, the BERT model performs worse on recall
compared to LSTM, which means that it lets go of some of the real scams.
Overall speaking, the f1 score for BERT is lower than that of the LSTM
. ) if we take both precision and recall into consideration.
preprocessing | KerasLayer
Table 5. BERT cross-validation results
Dropout.r Class_.1 Recall Precision Accuracy F1-Score
BERT encoder | KerasLayer 0.1 I 0722 00953 0984 0646
0.1 1.5 0.789 0912 0.986 0.656
\ 0.1 2 0.789 0.903 0.985 0.672
0.1 3 0.735 0.965 0.985 0.629
dropout | Dropout 0.1 5 0717 0976 0.985 0.623
0.2 1 0.785 0.951 0.987 0.679
0.2 1.5 0.812 0.923 0.987 0.691
0.2 2 0.821 0.943 0.989 0.694
classifier | Dense

Figure 6. The structure of the BERT model

chosen to be further tuned, the basis BERT model, the dropout rate, and
the class weight.

1. Model:

a. ’small_bert/bert_en_uncased L.-4_H-512_A-8’
b. ’small_bert/bert_en_uncased_L-8_H-512_A-8’
c. ’bert_en_uncased_L-12_H-768_A-12’

2. Dropout_rate = [0.1,0.2,0.3,0.5,0.6]
3. Class Weight:

a. Class 0: 1.0, Class 1: 1.0
b. Class 0: 1.0, Class 1: 1.5
. Class 0: 1.0, Class 1: 2.0
. Class 0: 1.0, Class 1: 3.0
e. Class 0: 1.0, Class 1: 5.0

e o

The BERT models require significant computational resources to
run, and one epoch may take up to one hour on a local device
with CPU, and around 15 to 20 minutes on online platforms such as
Google Colab with GPU acceleration. However, these online platforms
usually carry certain limitations in credit or hours that prevent our
team from testing all the parameters. Overall, our team was able to
test 8 sets of parameters. The best combination of hyper-parameters
is using ‘small_bert/bert_en_uncased_L-4_H-512_A-8’ with a dropout
rate equal 0.2 and a class weight of 2 for scam labels. The cross-
validation test results are below in table5. It has shown that BERT models
have significantly reduced false positives, which would help to ensure

4.5 Approach 5: Balanced Dataset

In order to address this issue, we further did the oversampling of the
minority class by 1000, the smallest values which helps avoid the effect
of over-fitting from the following methods described and give us the
most balanced effect of the precision score and recall score. Then we
experiment with the following six models: logistic regression, KNN,
SVM, random forest, and Naive Bayes. However, we noticed that
there may exist some over-fitting issues with logistic regression, SVM,
decision tree, and random forest model with 100% precision score.

Table 6. Balanced Sample Dataset with Traditional Models

Model Accuracy Fl-score Precision Recall
LogisticRegression 91.863 91.593 90.393  92.825
KNeighborsClassifier 71.306 76.325 62.974  96.861
SvcC 90.15 89.64 90.045  89.238
DecisionTreeClassifier 85.439 85.153 82.979  87.444
RandomForestClassifier  91.863 91.284 93.427  89.238
MultinomialNB 89.507 89.087 88.496  89.686

In the case of detecting fake job postings, we want to minimize both
false positives and false negatives since it would both neglect specific
kinds of goals. A false positive occurs when the model predicts a job
posting is fake when it is actually legitimate, while a false negative occurs
when the model predicts a job posting is legitimate when it is actually
fake. In general, minimizing false positives is important because avoids
flagging legitimate job postings as fake and potentially causing harm
to the organization or individuals posting the job. On the other hand,
minimizing false negatives is also important because failing to detect a
fake job posting can lead to negative consequences such as wasting time
and resources on the application process or potentially putting applicants
at risk.
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As a result, our team decided to do hyper-parameter tuning using
cross-validation by grid search function which allows us to find the best
estimator to fix the logistic regression and random forest model since
they have the best performance in all metrics. Then we adjusted the
prediction threshold based on the ROC curve and produced the optimized
AUC threshold. For the random forest model, the best parameters were
when max depth is 30, min samples split is 10, and n_estimators is 50.
The optimized AUC threshold at 0.55 and 0.87 maximum recall score
with 0.02 false Positive rate after evaluating model performance. While
for the logistic regression model, the best parameters with 0.01 C, 12
penalty, and liblinear solver. The optimized AUC threshold at 0.475 and
0.94 maximum recall score as well as 0.076 false positive rates.

Table 7. Fine-Tuned Hyper-parameters with Balanced Sample Dataset Models

Model Accuracy Precision Recall F1-Score
Logistic Regression 0.931 0.914 0.940 0.927
Random Forest Classifier 0.994 0.957 0.921 0.939

5 CONCLUSION

Overall, the numerous models that our team has created have shown
different strengths and weaknesses, and the search for better performance
in the precision score, and recall score has guided our team from
traditional models such as logistic regression and random forest to
more complicated LSTM and BERT neural network models. Due to the
imbalance of dataset samples, the model’s performance in accuracy has
not been a top priority, rather our team has focused on precision and
recall scores to evaluate our models. Using the f1-score as an indicator
that takes both precision and recall into consideration, the results show
that the CounterVectorizer version of Logistic Regression outperformed
other models.

Table 8. Overall All Models Test Results

Model Precision Recall Accuracy F1-Score
Top n-words 0726 0839 0979 0778
Logistics Regression
CountVectorizer 0749 0988 0988  0.852
Logistics Regression
LSTM 0.637 0.953 0.980 0.763
BERT 0.943 0.821 0.989 0.694

In the early stages of the project, our models in logistic regression and
random forest provided reasonable scores with both the top n-words, and
CountVectorizer approach, with the highest precision score of 0.957, and
recall score of 0.98 in different models. In the more advanced models,
BERT was able to reach a precision score of 0.637 and a recall score
of 0.953, and LSTM was able to reach a precision score of 0.943 and a
recall score of 0.821, but with significantly more computational resources
and time. In fact, BERT models are able to reduce false positives, while
LSTM models have reduced false negatives, but our attempts have not
shown success in achieving both in the same model. Thus, a more
complex structure could be helpful in this case for example applying
BERT as a bedding layer and using LSTM to make further predictions.
In this way, the model should be able to capture more sophisticated
relationships.

Therefore, when there are limited computation resources and time,
the traditional models and approaches may be more suitable, but when
the limitation in such factors are not considered, more complicated
models would provide better results and avoid large numbers of both
false positives and false negatives, as this may lead to real postings being
disregarded, or fraudulent postings being missed.

6 CHALLENGES, CAVEATS, AND OPPORTUNITIES

There were several challenges that our team faced during the process,
and these challenges may have contributed to inaccuracy in the models.
One of the first challenges that were discovered was the imbalance in the
original dataset, where the fraudulent emails accounted for less than 10%
of the instances. Our team manually created a balanced dataset in the later
steps in the modeling processes, but this still demonstrates that the lack
of number and diversity of fraudulent job postings to train on could limit
the word and content that the model is able to learn. A potential approach
to mitigate this challenge is to input more fraudulent postings and expand
the dataset until the dataset is more balanced.

Another challenge that our team has encountered in the process is
the long training time required from the pre-trained BERT model. Each
epoch in our attempt to fine-tune the pre-train model would take more
than 20 hours to run, increasing the difficulty to experiment and find the
best parameters for the model.

In addition, the format and content of online job postings have also
changed over the years, the original dataset is collected from 2012 to
2014, which is almost close to ten years ago. This could indicate that
our model may not incorporate a more recent format and wording of
job postings. This may prevent the model’s ability to accurately predict
more recent job postings, and in order to improve in this aspect, it would
require additional data to be collected and trained continuously.

One of the issues and questions that our team faced is the choice to
either prioritize precision or recall scores for our models. Due to the
imbalanced original dataset, the accuracy of the model would intuitively
be high, since even when all the job postings are predicted as legitimate
job postings, the accuracy would be over 90%. Therefore, accuracy
would not be the best-measuring metric for this model, but the choice
and balance of precision and recall is also important factor that would
need to be considered. This is due to the fact that if only the recall
score is optimized, it may lead to a low recall, meaning that a lot of
legitimate postings would be inaccurately labeled as fraudulent postings.
In contrast, if only the precision score is prioritized, then the chance of
fraudulent emails being missed and labeled as legitimate emails would be
higher. Therefore, in order to find a balance between false positives and
false negatives, our team has prioritized models that are able to produce
reasonable scores for both precision and recall.
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7 CONTRIBUTION

GitHub Repository

Part Morris Chang | Eric Yuxin Miao | Gina Shuyao Wang
Data Acquisitions v v v
Exploratory Data Analysis v v v
Data Preprocessing: v

Model Top n-word Model v

Model CountVectorizer v

Model Balanced Dataset

Finetuning v
Model LSTM \

Model BERT v

Video Editing v

Slide deck

Final Report v v v
Notebook Organization

Shell script v
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