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I. INTRODUCTION

Curriculum learning is a field in machine learning that
employs a systematic approach that mimics human learning
by organizing and sequencing the learning process. Unlike
conventional machine learning methods that uniformly train
models on randomly selected data points, curriculum learning
introduces a structured curriculum or learning schedule that
gradually exposes models to increasingly complex or infor-
mative examples.

In general, curriculum learning is a methodology to optimize
the order in which experience is accumulated by the agent,
to increase performance on a set of final tasks [1]]. Recently,
there has been much literature that combined curriculum
learning with deep reinforcement learning agents to enhance
the performances of the agents. For instance, metaheuristics
algorithms are a popular class of methods to task sequencing
problems (in other words, curriculum design) [1]]. Many works
such as [2] [3] introduced domain-specific novel heuristic
algorithms. Automatic Curriculum Learning (ACL) has been
successfully applied in various contexts, particularly in se-
lecting environments from a discrete set. For example, ACL
has been used to choose among different Minecraft mazes
as demonstrated by Matiisen et al.[4], or to select levels in
the game “Sonic the Hedgehog,” as shown by Mysore et
al.[5]]. Further, a teacher-student type of method, which trains
a separate learning agent to guide the student learning agent in
parallel, was explored in [6] in a bipedal walker environment.

However, some of these aforementioned works require
complex heuristics and significant human effort to design a
successful curriculum, which often doesn’t generalize well
to a different environment or tasks. Others have a separate
“teacher” agent (a Neural Network) that modifies the parame-
ters of the environment during training time, to aid the learning
process of the ”student” agent. Pre-training the “teacher” agent
or simultaneously training the “teacher” agent is nontrivial and
adds another degree of freedom which may destabilize the
learning process.

Recent advances in Large language model (LLM) and the
accessibility of pre-trained LLM allowed researchers to apply
LLM to machine learning problems. In the machine learning
domain, heuristics design work by humans can be transferred
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Fig. 1. Example of the LunarLander-V2 environment

to LLM, leveraging its ability to understand Natural Language,
and context, and generalize. In curriculum learning, LLM has
the potential to reduce human effort and level of intervention
in the training process. In this work, we develop an algorithm
for utilizing LLM for automatic curriculum design to enhance
the performance and learning efficiency of a reinforcement
learning agent.

II. METHODOLOGY
A. Environment

We tested our approach in LunarLander-V2 environment.
The classic toy problem based on an OpenAl Box2D environ-
ment has a lander that aims to optimize its trajectory to land
on the landing pad marked by the yellow flags as shown in
Fig. 1l The action space consists of a discrete (binary) vector
a € A of size (2,), and the observation space consists of a
hybrid state vector s € S of size (8,). It contains the global
coordinates of the lander’s center of mass, linear velocities
in the (x,y) directions, angle and angular velocity, and two
booleans that represent whether each leg is in contact with the
ground or not.

The episodic reward of the environment R., € R, is
defined as follows

Tep
Rep = Z(_O~3emain,t - 0~0363ide,t)
t
2OObsolved + 100br€st + 1Obleg - 100bc’rashed

(D
where €,,qin,+ and eg;qe,. are booleans for firing the main and
side engine for each frame, t. The ¢ represents the number of
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steps in an episode with the episode length of T¢,,. bsopeq are
berasheq booleans for solving (landing on the landing pad) and
crashing the lander. Finally, bj., and b,.s: correspond to the
boolean for each leg with ground contact and lander coming
to a rest. A well-trained agent is expected to have a reward
greater than 200.

The environment has four parameters that change the transi-
tion dynamics P, and hence the difficulty of the landing task.
The parameters are gravity, enable_wind, wind_power, and
turbulence_power. In our experiments, we always set
enable_wind to True. Hereon, we denote these parameters
as PEny = [gravity, wind_power, turbulence_power]. The
bounds for the rest of the environment parameters are as
follows:

—12.0 <gravity < 0.0
0.0 <wind_power < 20.0 2)
0.0 <turbulence_power < 2.0

By changing these environment parameters, the difficulty of
the landing task can be adjusted. Given an environment and a
landing task, we have an MDP=(S, A, P,, R,) which is used
in our reinforcement learning problem formulation.

B. Double Q-Learning

In our implementation, we used a Deep Q-Network (DQN)
agent. The DQN agent approximates the Q-value function
Q(s,a), which measures the quality of an action in a given
state, using a neural network [7]]. By iteratively updating
the network’s weights to minimize a loss function that is
proportional to the error between predicted and target Q-
values, DQN aims to achieve more accurate estimations of
optimal action-value pairs. To avoid overestimation bias in
the critic update, we used a double-Q trick. For the details
of the implementation for Double-Q learning please refer to
Algorithm [T] and [8]).

C. Automatic Curriculum Learning with LLM

In the realm of reinforcement learning, the dynamic adjust-
ment of training environments plays a pivotal role in enhancing
the learning efficiency and robustness of agents. Our project
innovates in this domain by integrating a Large Language
Model (LLM) to serve as an automatic curriculum designer for
a Lunar Lander agent. The LLM is tasked with generating and
modifying environmental parameters—gravity, wind power,
and turbulence power—based on the agent’s performance
metrics. This integration is a novel approach to curriculum
learning, leveraging the LLM’s capacity for complex decision-
making and pattern recognition.

Prompt engineering is central to our methodology. It in-
volves crafting structured inputs that guide the LLM in gener-
ating appropriate environmental parameters. The prompts are
divided into several parts, each serving a distinct purpose,
please refer to appendix for more details of each prompt
file:

Algorithm 1 Double Q-Learning with LLM feedback
0: procedure TRAINDQN(env)
Require: env
Initialize replay memory D
Initialize the log
Initialize primary Q-network parameters ¢
Initialize target Q-network parameters ¢’ = ¢
Set exploration rate € and decay rate €gecay
Set C' the target update period
Set T' the maximum training steps
Set Teyq; the evaluation period
for episode =1 to N, do
s1 = env.reset()
fort=1to T do
With probability €, select a random action ay
Otherwise, select a; = argmaxg,c4 Qo (st, ar)
Execute action ay, observe r; and s;41
Store transition (s;, at, r¢, S¢41) in D
Sample mini-batch of transitions (s, a,r, s’) from D
if terminal state s’ then

Yi =Ty
else

yj =1j + Q¢ (8", Qu(s',a))
end if

0 ¢~ a X, (s a)(Qolsiar) — i)’
if ¢ mod C' == 0 then
¢ ¢
end if
if t mod T,,,; == 0 then
Evaluate the agent and save train_log
end if
€ < € X €decay
end for
end for
end procedure=0

o Initial System Prompt: This includes a basic description
of the environment, the task’s reward design, and the
parameters (with their ranges) that need to be adjusted.

e Initial User Prompt: This is used to solicit an initial,
straightforward output from the LLM.

e Code Output Tip: This assists the LLM in formatting its
output correctly, ensuring it adheres to JSON format and
uses appropriate numerical representations.

e Code Feedback: This is crucial for iterative learning. It
guides the LLM to propose new parameter settings based
on the agent’s performance in previous training steps. It
includes tips, constraints, and rules for analyzing metrics
and adjusting the difficulty level.

o Policy Feedback: This incorporates metrics from the
TensorBoard log, providing the LLM with data to inform
its decisions for new parameter iterations.

The LLM is consulted periodically to determine whether
to alter the environment’s difficulty. If the LLM suggests
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Fig. 2. Automatic Curriculum Learning with LLM Architecture

identical parameters to the current ones, training continues
as is. However, if new parameters are proposed, the current
training loop is terminated, and the environment is reset with
these new settings. This process is repeated a predetermined
number of times throughout the training phase.

Our decision-making criteria are grounded in a comprehen-
sive analysis of various performance metrics, including critic
loss, Q-values, and evaluation returns. These metrics, along
with their mean, maximum, and minimum values, are logged
in TensorBoard and subsequently downsampled to 10% of
their original size to optimize token usage for the LLM. This
downsampling is crucial for efficiently utilizing the LLM’s
capabilities within token constraints, ensuring that the most
related information is considered in each decision-making
cycle.

The algorithm for Automatic Curriculum Learning with
LLM is presented in Algorithm [2] and visualized in Fig. [
After initializing the environment using the LLM teacher, we
iterate through N,,,s environments with varying difficulties.
LLM will read the training log of the DQN agent and decide
to either keep the current environment and allow the agent to
keep learning or change the environment with appropriately
adjusted difficulty (pgny)-

Algorithm 2 Automatic Curriculum Learning with LLM
Require: LLM, Pfeedback,
0: Initialize LLM feedback period Pfecdpack
0: pPEny < LLM.init_generate()
0: Generate env < Env(pgny)
0: for n =1 to Nepys do
0:  while —change_env do
0 train_log < TrainDQN(env)
0 if train_log.steps mod Pfecapack== 0 then
0 Py < LLM.iter_generate(train_log)
0: env' = Env(pg,,)
0
0
0
0
0
0
0

end if
if PEnv ~= p/E'nU then
env < env’
pEn’U <_ p/En'U
end if
end while
: end for=0

III. RESULTS
A. Training

In our experiment, we trained two models

1) DQN agent trained on set of environments £ generated
by ACL-LLM

2) DQN agent trained on the £ from 1)
During the DQN agent’s training procedure using the ACL-
LLM Algorithm@ the LLM Teacher generates N, distinct
sets of environment parameters. Then, the DQN agent under-
goes sequential training on these parameterized environments.
This training paradigm dynamically adjusts the difficulty levels
of the environments contingent upon the performance exhib-
ited by the DQN agent. This adaptive adjustment process
is designed to augment the generalization capabilities of the
DQN agent. Then for Model 2] another DQN agent undergoes
sequential training on the same /N.,,s; environments, in a
randomized order. The agent is trained in each environment
for a fixed number of steps denoted as Ppccapack. This is
deliberately chosen to allow for a fair comparison as the Model
[[] was trained for that same number of steps per environment.
This is done to demonstrate the effectiveness of the LLM in
generating a training curriculum by solving a generative and
sequential problem of the training environments. We repeat
the experiments for Pccapack = 50K, 100K, and 300K to
analyze the impact of longer training steps per environment.
The experimental parameters are reported in Table [l The
neural network architecture has 16 hidden units with 2 layers.
For training batch size of 64 was used. We utilized the OpenAl
gpt3.5-turbo model API as the backend of our LLM.

TABLE I
EXPERIMENT PARAMETERS
Experiment  Nenys Nep T Pfeedback o 2
1 10 1 1M 50 K 0.001  0.99
2 10 1 1M 100 K 0.001  0.99
3 10 1 1M 300 K 0.001  0.99

We report the training results for Pfeegpact: = 100K in Fig.
[3|and Fig. [ for the DQN trained with ACL-LLM and baseline
training algorithm correspondingly. The evaluation reward
converges and fluctuates when the environment parameters
are changed (indicated by the red dashed lines). Note that
the evaluation rewards for the DQN trained with ACL-LLM
is more stable than that of the baseline as the environment
parameter changes are carefully selected by the LLM teacher
whereas the environment parameter changes are random in the
baseline training algorithm.

B. Evaluation Setup

In our study, the effectiveness of the ACL-LLM approach
is evaluated against a baseline DQN agent as discussed above.
For evaluation purposes, both agents are subjected to a set of
environments generated with uniformly sampled parameters.
This approach is intended to test the agents’ performance
in unseen scenarios, thereby assessing their generalization
capabilities. The assumption underpinning this methodology
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Fig. 3. Average Evaluation Reward of a DQN agent trained with ACL-LLM in
the LunarLander-v2 environment during the training phase for Precdpack =
100K. The red dashed lines indicate where the environment has changed.
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Fig. 4. Average Evaluation Reward of a DQN baseline agent in the
LunarLander-v2 environment during the training phase for Preedback =
100K. The red dashed lines indicate where the environment has changed.

is that a well-designed curriculum, as proposed by the LLM,
not only enhances learning efficiency but also equips the agent
with a more robust and versatile skill set, enabling it to perform
effectively in a wider range of scenarios.

We run evaluations in 10 different environments with 100
trajectories per environment.

C. Evaluation Results

For Pfccapack = DOK, the effects of training with a LLM-
generated curriculum are apparent as shown in Fig. 5] While
both models do not land successfully on average, the model
trained with ACL-LLM performs strictly better (by 42.97 on
average) than the DQN baseline model. Also, in some test
environments, a model trained with ACL-LLM does succeed
whereas DQN baseline model fails in every test environment.

For Pfeeqpack = 100K, similar behaviors are observed as in
Preedvack = 50 case. While both models do not land success-
fully on average, the model trained with ACL-LLM performs
strictly better (by 78.44 on average) than the DQN baseline
model. As shown in the maximum return in Fig. [] both models
can land on the landing pad at least once out of 100 evaluation
trajectories across all test environments. However, the model
trained with ACL-LLM Algorithm performs strictly better than
the DQN baseline model across all test environments.

Lastly, for Pfecdpack = 300K, the model trained with ACL-
LLM no longer performs better than the DQN baseline model

(-32.14 on average). We suspect that the effectiveness of train-
ing with curriculum has diminished at this point as the DQN
baseline model can train for sufficient steps in each training
environment. Also, we note that the task in LunarLander-V2
environment is not too complex. Therefore, with sufficient
training duration, a DQN agent can perform well in evaluation.
We hypothesize that the ACL-LLM algorithm will be more ef-
fective in more complex task, such as Parkour-v0 environment
in Appendix The results demonstrate that ACL-LLM can
enhance evaluation performance even with small training steps
for tasks where training is expensive.
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Fig. 5. Average evaluation return (Top) and max return (Bottom) on 10 ran-
domly generated environments using the model trained with Prcegpack=50K

IV. CONCLUSION

In this work, we presented a novel automatic curriculum
learning algorithm leveraging the large language model’s ca-
pacity for contextual understanding and pattern recognition to
replace human labor in curriculum design. In smaller training
steps, the ACL-LLM demonstrated superior performances in
the test evaluation compared to the DQN agent trained for
the same number of training steps per training environment.
This showed the effectiveness of the curriculum (sequence of
environments with varying difficulty) generated by the LLM.
However, for higher training steps, the effectiveness of the
curriculum generated by the LLM diminished. Therefore, for
tasks where training is expensive, ACL-LLM algorithm can
enhance the learning process by automatically generating a
curriculum that can enhance the generalizability of the trained
agent.

For future work, we would like to train and evaluate the
ACL-LLM algorithm in a more complex and difficult task such
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Fig. 8. Example of the Parkour-v0 environment

as Parkour-v0 environment described in Appendix From
this, we would be able to draw a more holistic conclusion on
the effectiveness of our proposed algorithm.

V. APPENDIX

We would like to note that our team initially started with
three team members. However, one team member decided
to drop the course a few weeks after the milestone report
submission. Since then, we consulted with the GSIs and
decided to change the topic and scope of the project to be
more fitting for a group of two people.

Also, we wanted to note what we have attempted but aborted
due to a lack of time and resources in the appendix.

A. Environment

Initially, we wanted to test our approach on the custom
Parkour-v0 environment [6] as shown in Fig. 8] which is
based on the BipedalWalker-v2 OpenAl gym environment.
This custom gym environment consists of various terrains and
a bipedal walker agent that aims to reach the end of the terrain.
The difficulty of the terrain depends on the roughness of the
ground surface, the number of hills, and the steepness of the
hills. The observation vector is a continuous vector of shape
(36,), and the action space is a continuous vector of size (4,).
Observation consists of lidar sensor measurements (distance ),
head positions, and joint positions [6]. The action represents
the torque applied on 4 joints of the bipedal walker agent (e.g.
2 hip joints and 2 knee joints).

The base environment utilizes a pre-trained Compositional
pattern-producing network (CPPN) to generate terrains with
varying roughness and difficulty [6]. We modified the base
environment to replace the CPPN with a large language model
(LLM) to generate the terrain during training to enable LLM
to directly generate an environment. While the Algorithm [2]
runs in this environment, the training of a Soft-Actor-Critic
(SAC) agent in this environment was unsuccessful and long.
For instance, Fig. 9| shows the average evaluation reward on a
single relatively flat and easy terrain, which took about 7 hours
to run. The converged average reward is about -15 whereas a
successful walker should have a reward greater than 250. If we
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Fig. 9. Average Evaluation Reward of a SAC agent in the Parkour-v0

environment. A successful agent should achieve a reward of about 230

wanted to run ACL-LLM for this setup, it would take about 72
hours for N.,,s = 10, including the LLM query time. After
careful consideration, we ultimately aborted this environment
as time and manpower were limited to tune the SAC agent.

B. LLM Prompts

1) Initial User: You are an environment designer for Lunar
Lander.

Some key information about the Lunar Lander environment
are:

o The lander starts at the top center of the viewport with a
random initial force applied to its center of mass.

o Reward for moving from the top of the screen to the
landing pad and coming to rest is about 100-140 points.
If the lander moves away from the landing pad, it loses
reward. If the lander crashes, it receives an additional -
100 points. If it comes to rest, it receives an additional
+100 points. Each leg with ground contact is +10 points.
Firing the main engine is -0.3 points each frame. Firing
the side engine is -0.03 points each frame. Solved is 200
points.

The episode finishes if:

o The lander crashes (the lander’s body gets in contact with
the moon)

o The lander gets outside of the viewport (x coordinate is
greater than 1)

o The lander is not awake. From the Box2D docs, a body
which is not awake is a body which doesn’t move and
doesn’t collide with any other body

The user will use your environment to train a RL agent (an
Deep Q-Network Agent). You should return 3 different values

« gravity dictates the gravitational constant. It is strictly less
than 0.0 and strictly greater than -12.0.

o wind_power dictates the maximum magnitude of linear
wind applied to the craft. It is strictly less than 20.0 and
strictly greater than 0.0.

« turbulence_power dictates the maximum magnitude of
rotational wind applied to the craft. It is strictly less than
2.0 and strictly greater than 0.0.
2) Initialize System: Please give me a set of environment
parameters to start training my Lunar Lander.
3) Code Output Tips: Below are some constraints that you
should follow when return the values.

o Return only 1 set of parameters
« Return your value in a json format only, like the following
example:
{"gravity”:-0.1,”wind_power”:0.1, turbulence_power”:0.1}
4) Code Feedback: Please carefully analyze the policy
feedback and provide a new environment setting. Please follow
the following rules. You should not change the parameters that
you gave in the past round if the agent is still learning, unless:

o The performance of the agent is good and the eval_return
has converged. Make the environment harder.

o The performance of the agent is not increasing at all,
showing that it is not learning. Make the environment
easier.

Some tips for analyzing the performance:

o Maximum possible eval_return is 200

o If the eval_return converges fast, you should make the
environment harder.

o If the eval_return is fluctuating without increasing, you
should make the environment easier.

Some helpful tips for altering difficulty of the environment:

e You can make the environment harder by increasing the
gravity.

e You can make the environment harder by increasing the
wind_power.

¢ You can make the environment harder by increasing the
turbulence_power.

5) Policy Feedback: We trained a RL policy using the
provided terrains and tracked global policy metrics such as
evaluation return and episode lengths after every epoch_freq
epochs and the maximum, mean, minimum values encoun-
tered:
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